Expression of glucose-dependent insulinotropic polypeptide in the zebrafish.

نویسندگان

  • Michelle C Musson
  • Lisa I Jepeal
  • Patrick D Mabray
  • Irina V Zhdanova
  • Wellington V Cardoso
  • M Michael Wolfe
چکیده

In mammals, glucose-dependent insulinotropic polypeptide (GIP) is synthesized predominately in the small intestine and functions in conjunction with insulin to promote nutrient deposition. However, little is known regarding GIP expression and function in early vertebrates like the zebrafish, a model organism representing an early stage in the evolutionary development of the compound vertebrate pancreas. Analysis of GIP and insulin (insa) expression in zebrafish larvae by RT-PCR demonstrated that although insa was detected as early as 24 h postfertilization (hpf), GIP expression was not demonstrated until 72 hpf, shortly after the completion of endocrine pancreatic development but prior to the commencement of independent feeding. Furthermore, whole mount in situ hybridization of zebrafish larvae showed expression of GIP and insa in the same tissues, and in adult zebrafish, RT-PCR and immunohistochemistry demonstrated GIP expression in both the intestine and the pancreas. Receptor activation studies showed that zebrafish GIP was capable of activating the rat GIP receptor. Although previous studies have identified four receptors with glucagon receptor-like sequences in the zebrafish, one of which possesses the capacity to bind GIP, a functional analysis of these receptors has not been performed. This study demonstrates interactions between the latter receptor and zebrafish GIP, identifying it as a potential in vivo target for the ligand. Finally, food deprivation studies in larvae demonstrated an increase in GIP and proglucagon II mRNA levels in response to fasting. In conclusion, the results of these studies suggest that although the zebrafish appears to be a model of an early stage of evolutionary development of GIP expression, the peptide may not possess incretin properties in this species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glucose-dependent insulinotropic polypeptide is a growth factor for beta (INS-1) cells by pleiotropic signaling.

Activation of the G-protein-coupled receptor for glucose-dependent insulinotropic polypeptide facilitates insulin-release from pancreatic beta-cells. In the present study, we examined whether glucose-dependent insulinotropic polypeptide also acts as a growth factor for the beta-cell line INS-1. Here, we show that glucose-dependent insulinotropic polypeptide induced cellular proliferation synerg...

متن کامل

Glucose-Dependent Insulinotropic Polypeptide-Mediated Up-Regulation of -Cell Antiapoptotic Bcl-2 Gene Expression Is Coordinated by Cyclic AMP (cAMP) Response Element Binding Protein (CREB) and cAMP-Responsive CREB Coactivator 2

Published Ahead of Print 17 December 2007. 10.1128/MCB.00325-07. 2008, 28(5):1644. DOI: Mol. Cell. Biol. H. S. McIntosh Su-Jin Kim, Cuilan Nian, Scott Widenmaier and Christopher and cAMP-Responsive CREB Coactivator 2 Response Element Binding Protein (CREB) Is Coordinated by Cyclic AMP (cAMP) Gene Expression Bcl-2 -Cell Antiapoptotic β Polypeptide-Mediated Up-Regulation of Glucose-Dependent Insu...

متن کامل

Glucose-dependent insulinotropic peptide receptor overexpression in adrenocortical hyperplasia in MEN1 syndrome without loss of heterozygosity at the 11q13 locus

BACKGROUND The molecular mechanisms involved in the genesis of the adrenocortical lesions seen in MEN1 syndrome (ACL-MEN1) remain poorly understood; loss of heterozygosity at 11q13 and somatic mutations of MEN1 are not usually found in these lesions. Thus, additional genes must be involved in MEN1 adrenocortical disorders. Overexpression of the glucose-dependent insulinotropic peptide receptor ...

متن کامل

Mechanisms underlying glucose‐dependent insulinotropic polypeptide and glucagon‐like peptide‐1 secretion

The incretin hormones, glucose-dependent insulinotropic peptide and glucagon-like peptide-1, are secreted from intestinal K- and L cells, respectively, with the former being most abundant in the proximal small intestine, whereas the latter increase in number towards the distal gut. Although an overlap between K- and L cells can be observed immunohistochemically or in murine models expressing fl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 297 6  شماره 

صفحات  -

تاریخ انتشار 2009